日期:2021-12-15
這是復雜的三元一次方程組,是優秀的數學教案文章,供老師家長們參考學習。

一、知識結構
二、重點、難點分析
本節教學的重點是冪的乘方與積的乘方法則的理解與掌握,難點是法則的靈活運用.
1.冪的乘方
冪的乘方,底數不變,指數相乘,即
(都是正整數)
冪的乘方
的推導是根據乘方的意義和同底數冪的乘法性質.
冪的乘方不能和同底數冪的乘法相混淆,例如不能把的結果錯誤地寫成,也不能把的計算結果寫成.
冪的乘方是變乘方為(底數不變,指數相乘的)乘法,如;而同底數冪的乘法是變(同底數的冪)乘為(冪指數)加,如.
2.積和乘方
積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘.即
(為正整數).
三個或三個以上的積的乘方,也具有這一性質.例如:
3.不要把冪的乘方性質與同底數冪的乘法性質混淆.冪的乘方運算,是轉化為指數的乘法運算(底數不變);同底數冪的乘法,是轉化為指數的加法運算(底數不變).
4.同底數冪的乘法、冪的乘方、積的乘方的三個運算性質是整式乘法的基礎,也是整式乘法的主要依據.對三個性質的數學表達式和語言表述,不僅要記住,更重要的是理解.在這三個冪的運算中,要防止符號錯誤:例如,;還要防止運算性質發生混淆:等等.
三、教法建議
1.冪的乘方導出的根據是乘方的意義和同底數冪的乘法性質.教學時,也要注意導出這一性質的過程.可先以具體指數為例,明確幕的乘方的意義,導出性質,如
對于從指數連加得到指數相乘,要根據學生情況多作一些說明.以為例,再一次說明
可以寫成.這一點是導出冪的乘方性質的關鍵,務必使學生真正理解.在此基礎上再導出性質.
2.使學生要嚴格區分同底數冪乘法性質與冪的乘方性質的不同,不能混淆.具體講解可從下面兩點來說明:
(1)牢記不同的運算要使用不同的性質,運算的意義決定了運算的性質.
(2)記清冪的運算與指數運算的關系:
(同底)冪相乘→指數相加(“乘”變“加”,降一級運算);
冪乘方→指數相乘(“乘方”變“乘法”,降一級運算).
了解到有關冪的兩個重要性質都有“使原運算僅降一級運算”的規律,可使自己更好掌握有關性質.
3.在教學的各個環節中,注意啟發學生,不僅掌握法則,還要明確為什么.三種運算法則全講完之后,學生最易產生法則間的混淆,為了解決這個問題除叫學生熟記法則之外,在學生回答問題和寫作業時,注意解題步驟,或及時發現問題,說明出現問題的原因;要注意防止兩個錯誤:
(1)(-2xy)4=-24x4y4.
(2)(x+y)3=x3+y3.
冪的乘方與積的乘方(一)
一、教學目標
1.理解冪的乘方性質并能應用它進行有關計算.
2.通過推導性質培養學生的抽象思維能力.
3.通過運用性質,培養學生綜合運用知識的能力.
4.培養學生嚴謹的學習態度以及勇于創新的精神.
5.滲透數學公式的結構美、和諧美.
二、學法引導
1.教學方法:引導發現法、嘗試指導法.
2.學生學法:關鍵是準確理解冪的乘方公式的意義,只有準確地判別出其適用的條件,才可以較容易地應用公式解題.
三、重點·難點及解決辦法
(-)重點
準確掌握冪的乘方法則及其應用.
(二)難點
同底數冪的乘法和冪的乘方的綜合應用.
(三)解決辦法
在解題的過程中,運用對比的方法讓學生感受、理解公式的聯系與區別.
四、課時安排
一課時.
五、教具學具準備
投影儀、膠片.
六、師生互動活動設計
1.復習同底數冪乘法法則并進行、的計算,從而引入新課,在探究規律的過程中,得出冪的乘方公式,并加以充分的理解.
2.教師舉例進行示范,師生共練以熟悉冪的乘方性質.
3.設計錯例辨析和練習,通過不同的題型,從不同的角度加深對公式的理解.
七、教學步驟
(-)明確目標
本節課重點是掌握冪的乘方運算性質并能進行較靈活的應用
(二)整體感知
冪的乘方法則的應用關鍵是判斷準其適用的條件和形式.
(三)教學過程
1.復習引入
(1)敘述同底數冪乘法法則并用字母表示.
(2)計算:①②
2.探索新知,講授新課
(1)引入新課:計算和和
提問學生式子、的意義,啟發學生把冪的乘方轉化為同底數暴的乘法.計算過程按課本,并注明每步計算的根據.
觀察題目和結論:
推測冪的乘方的一般結論:
(2)冪的乘方法則
語言敘述:冪的乘方,底數不變,指數相乘.
字母表示:.(,都是正整數)
推導過程按課本,讓學生說出每一步變形的根據.
(3)范例講解
例1計算:
①②
③④
解:①
②
③
④
例2計算:
①
②
解:①原式
②原式
練習:①P971,2
②錯例辨析:下列各式的計算中,正確的是()
A.B.
C.D.
(四)總結、擴展
同底數冪的乘法與冪的乘方性質比較:
冪運算種類指數運算種類
同底冪乘法乘法加法
教學目標:
1.了解三元一次方程組的概念.
2.會解某個方程只有兩元的簡單的三元一次方程組.
3.掌握解三元一次方程組過程中化三元為二元的思路.
教學重點:
(1)使學生會解簡單的三元一次方程組
(2)通過本節學習,進一步體會“消元”的基本思想.
教學難點:針對方程組的特點,靈活使用代入法、加減法等重要方法.
教學過程:
一、創設情景,導入新課
前面我們學習了二元一次方程組的解法,有些實際問題可以設出兩個未知數,列出二元一次方程組來求解。實際上,有不少問題中會含有更多的未知數,對于這樣的問題,我們將如何來解決呢?
【引例】小明手頭有12張面額分別為1元,2元,5元的紙幣,共計22元,其中1元紙幣的數量是2元紙幣數量的4倍,求1元,2元,5元紙幣各多少張.
提出問題:1.題目中有幾個條件?2.問題中有幾個未知量?3.根據等量關系你能列出方程組嗎?
【列表分析】
(三個量關系) 每張面值 × 張數 = 錢數
1元 x x
2元 y 2y
5元 z 5z
合 計 12 22
注 1元紙幣的數量是2元紙幣數量的4倍,即x=4y
解:(學生敘述個人想法,教師板書)
設1元,2元,5元的張數為x張,y張,z張.
根據題意列方程組為:
【得出定義】 (師生共同總結概括)
這個方程組有三個相同的未知數,每個方程中含未知數的項的次數都是1,并且一共有三個方程,像這樣的方程組叫做三元一次方程組.
二、探究三元一次方程組的解法
【解法探究】怎樣解這個方程組呢?能不能類比二元一次方程組的`解法,設法消去一個或兩個未知數,把它化成二元一次方程組或一元一次方程呢?(展開思路,暢所欲言)
例1 .解方程組
分析1:發現三個方程中x的系數都是1,因此確定用減法“消x”.
分析2:方程③是關于x的表達式,確定“消x”的目標.
【方法歸納】根據方程組的特點,由學生歸納出此類方程組為:
類型一:有表達式,用代入法.
針對上面的例題進而分析,例1中方程③中缺z,因此利用①、②消z,可達到消元構成二元一次方程組的目的.
根據方程組的特點,由學生歸納出此類方程組
類型二:缺某元,消某元.
教師提示:當然我們還可以通過消掉未知項y來達到將“三元”轉化為“二元”目的,同學可以課下自行嘗試一下.
三、課堂小結
1.解三元一次方程組的基本思路:通過“代入”或“加減”進行消元,把“三元”化為“二元”,使解三元一次方程組轉化為解二元一次方程組,進而轉化為解一元一次方程.
即三元一次方程組 二元一次方程組 一元一次方程
2.解題要有策略,今天我們學到的策略是:有表達式,用代入法;缺某元,消某元.
四、布置作業
1. 解方程組 你能有多少種方法求解它?
教學目標:
1.了解三元一次方程組的概念.
2.會解某個方程只有兩元的簡單的三元一次方程組.
3.掌握解三元一次方程組過程中化三元為二元的思路.
教學重點:
(1)使學生會解簡單的三元一次方程組
(2)通過本節學習,進一步體會“消元”的基本思想.
教學難點:針對方程組的特點,靈活使用代入法、加減法等重要方法.
教學過程:
一、創設情景,導入新課
前面我們學習了二元一次方程組的解法,有些實際問題可以設出兩個未知數,列出二元一次方程組來求解。實際上,有不少問題中會含有更多的未知數,對于這樣的問題,我們將如何來解決呢?
【引例】小明手頭有12張面額分別為1元,2元,5元的紙幣,共計22元,其中1元紙幣的數量是2元紙幣數量的4倍,求1元,2元,5元紙幣各多少張.
提出問題:1.題目中有幾個條件?2.問題中有幾個未知量?3.根據等量關系你能列出方程組嗎?
【列表分析】
(三個量關系) 每張面值 × 張數 = 錢數
1元 x x
2元 y 2y
5元 z 5z
合 計 12 22
注 1元紙幣的數量是2元紙幣數量的4倍,即x=4y
解:(學生敘述個人想法,教師板書)
設1元,2元,5元的張數為x張,y張,z張.
根據題意列方程組為:
【得出定義】 (師生共同總結概括)
這個方程組有三個相同的未知數,每個方程中含未知數的.項的次數都是1,并且一共有三個方程,像這樣的方程組叫做三元一次方程組.
二、探究三元一次方程組的解法
【解法探究】怎樣解這個方程組呢?能不能類比二元一次方程組的解法,設法消去一個或兩個未知數,把它化成二元一次方程組或一元一次方程呢?(展開思路,暢所欲言)
例1 .解方程組
分析1:發現三個方程中x的系數都是1,因此確定用減法“消x”.
分析2:方程③是關于x的表達式,確定“消x”的目標.
【方法歸納】根據方程組的特點,由學生歸納出此類方程組為:
類型一:有表達式,用代入法.
針對上面的例題進而分析,例1中方程③中缺z,因此利用①、②消z,可達到消元構成二元一次方程組的目的.
根據方程組的特點,由學生歸納出此類方程組
類型二:缺某元,消某元.
教師提示:當然我們還可以通過消掉未知項y來達到將“三元”轉化為“二元”目的,同學可以課下自行嘗試一下.
三、課堂小結
1.解三元一次方程組的基本思路:通過“代入”或“加減”進行消元,把“三元”化為“二元”,使解三元一次方程組轉化為解二元一次方程組,進而轉化為解一元一次方程.
即三元一次方程組 二元一次方程組 一元一次方程
2.解題要有策略,今天我們學到的策略是:有表達式,用代入法;缺某元,消某元.
四、布置作業
1. 解方程組 你能有多少種方法求解它?
教學建議
一、重點、難點分析
本節教學的重點是掌握三元一次方程組的解法,教學難點 是解法的靈活運用.能夠熟練的解三元一次方程組是進一步學習一次方程組的應用,以及一次不等式組的解法的基礎.
1.方程組有三個未知數,每個方程的未知項的次數都是1,并且一共有三個方程,這樣的方程組就是三元一次方程組.
2.三元一次方程組的解法仍是用代入法或加減法消元,即通過消元將三元一次方程組轉化為二元一次方程組,再轉化為一元一次方程.
3.如何消元,首先要認真觀察方程組中各方程系數的特點,然后選擇最好的解法.
4.有些特殊方程組,可用特殊的消元方法,有時一下子可消去兩個未知數,直接求出一個未知數值來.
5.解一次方程組的消元“轉化”基本思想,可以推廣到“四元”、“五元”等多元方程組,這是今后要學習的內容.
二、知識結構
三、教法建議
1. 解三元一次方程組時,由于方程較多,學生容易出錯.因此,應提醒學生注意,在消去一個未知數得出比原方程組少一個未知數的二元一次方程組的過程中,原方程組的每一個方程一般都至少要用到一次.
2. 消元時,先要考慮好消去哪一個未知數.開始練習時,可以先把要消去的未知數寫出來(如教科書在分析中所寫的那樣),然后再進行消元.
在例2中,如果先確定消去 ,那么這三個方程兩兩分組的方法有3種;①與②,①與③,②與③.我們可以從中任選2種消去 .這里特別要注意選定2種后,必須消去同一個未知數.如果違背了這一點,所得的兩個新方程雖然各含兩個未知數,但由它們組成的方程組仍然含有三個未知數,這在實際上沒有消元.
教學設計示例
一、素質教育目標
(一)知識教學點
1.知道什么是三元一次方程.
2.會解某個方程只有兩元的簡單的三元一次方程組.
3.掌握解三元一次方程組過程中化三元為二元或一元的思路.
(二)能力訓練點
1.培養學生分析能力,能根據題目的特點,確定消元方法、消元對象.
2.培養學生的計算能力、訓練解題技巧.
(三)德育滲透點
滲透“消元”的思想,設法把未知數轉化為已知.
(四)美育滲透點
通過本節課的學習,滲透方程恒等變形的數學美,以及方程組解的奇異美.
二、學法引導
1.教學方法:觀察法、討論法、練習法.
2.學生學法:三元一次方程組比二元一次方程組要復雜些,有些題的解法技巧性較強,因此在解題前必須認真觀察方程組中各個方程的系數特點,選擇好先消去的“元”,這是決定解題過程繁簡的關鍵.一般來說應先消去系數最簡單的未知數.
三、重點·難點·疑點及解決辦法
(一)重點
使學生會解簡單的三元一次方程組,經過本課教學進一步熟悉解方程組時“消元”的基本思想和靈活運用代入法、加減法等重要方法.
(二)難點
針對方程組的特點,選擇最好的解法.
(三)疑點
如何進行消元.
(四)解決辦法
加強理解二元及三元一次方程組的解題思想是“消元”,故在求解中為便于計算應選擇系數較簡單的未知數將它消去.
四、課時安排
一課時.
五、教具學具準備
投影儀、自制膠片.
六、師生互動活動設計
1.教師先復習解二元一次方程組的解題思想及辦法,讓學生充分理解方程組的消元思想及方法.
2.教師由引例引出三元一次方程組,由學生思考、討論后解決如何消三元變二元,教師講解、小結.
3.由學生嘗試,解決例題.
4.學生練習,教師小結、講評.
七、教學步驟
(一)明確目標
本節課將學習如何求三元一次方程組的解.
(二)整體感知
通過復習二元一次方程組的解題思想,從而類推出三元一次方程組的.解題思想及解題方法,讓學生牢牢抓住利用消元的思想化三元為二元,再化二元為一元的辦法來求解.
(三)教學過程
1.復習導入 、探索新知
(1)解二元一次方程組的基本方法有哪幾種?(2)解二元一次方程組的基本思想是什么?
甲、乙、丙三數的和是26,甲數比乙數大1,甲數的兩倍與丙數的和比乙數大18,求這三個數.
題目中有幾個未知數?含有幾個相等關系?你能根據題意列出幾個方程?
學生活動:回答問題、設未知數、列方程.
這個問題必須三個條件都滿足,因此,我們把三個方程合在一起,寫成下面的形式:
這個方程組有三個未知數,每個方程的未知數的次數都是1,并且一共有三個方程,像這樣的方程組,就是我們要學的三元一次方程組.
怎樣解這個三元一次方程組呢?你能不能設法消云一個或兩個未知數,把它化成二元一次方程組或一元一次方程?
學生活動:思考、討論后說出消元方案.
教師對學生的回答給予肯定或否定,糾正后說出消元方案:依照代入法,由較簡單的方程②,可得 ④,進一步將④分別代入①和③中,就可消去 ,得到只含 、 的二元一次方程組.
解:由②,得 ④
把④代入①,得 ⑤
把④代入③,得 ⑥
⑤與⑥組成方程組
解這個方程組得
把 代入④,得
∴
∴
注意:a.得二元一次方程組后,解二元一次方程的過程在練習本上完成.
b.得 , 后,求 ,要代入前面最簡單的方程④.
c.檢驗.
這道題也可以用加減法解,②中不含 ,那么可以考慮將①與③結合消去,與②組成二元一次方程組.
學生活動:在練習本上用加減法解方程組.
【教法說明】通過一題多解,不僅能開闊學生的思維,培養學生的興趣,而且,可以鞏固解方程組時通過“消元”把未知轉化為已知的基本思想.
2.學生嘗試解決例題
例1 解方程組
學生活動:獨立分析、思考,嘗試解題,有的學生可能用代入法解,有的學生可能用加減法解,選一個用加減法解的學生板演,然后,讓用代入法的學生比較哪種方法簡單.
解:②×3+③,得 ④
①與④組成方程組
解這個方程組,得
把 , 代入②,得
∴
∴
歸納:這個方程組的特點是方程①不含 ,而②、③中 的系數絕對值成整數倍關系,顯然用加減法從②、③中消去 后,再與①組成只含 、 的二元一次方程組的解法最為合理.而用代入法由①得到的式子含有分母,代入②、③較繁.
【教法說明】有了前例的基礎,讓學生獨立嘗試解題,可以培養他們分析問題、解決問題的能力;在解題后歸納題目的特點為,點明消元方法和消元對象,更有助于學生探索方法、掌握技巧.
3.嘗試反饋,鞏固知識
練習:P30 (1).
學生活動:獨立完成練習后,同桌、前后桌之間按不同解法的同學交換,看哪種方法最簡單.
4.變式訓練要,培養能力
補例:解方程組
學生活動:獨立完成.
【教法說明】此方程組中方程①、③中 、 的系數完全相同,用③-①可直接得到 ,再把 代入②可求 ,代入①可求 .這道題直接化三元為一元,能使學生體會到解法技巧的重要性,覺得數學問題真是奧妙無窮!
(四)總結、擴展
1.解三元一次方程組的基本思想是什么?方法有哪些?
2.解題前要認真觀察各方程的系數特點,選擇最好的解法,當方程組中某個方程只含二元時,一般的,這個方程中缺哪個元,就利用另兩個方程用加減法消哪個元;如果這個二元方程系數較簡單,也可以用代入法求解.
3.注意檢驗.
【教法說明】這樣總結,既突出了本課重點,又突出了本節內容中例題、習題的特點—某個方程只含兩元,使學生在以后解題時有很強的針對性.
八、布置作業
(一)必做題:P31 A組1.
(二)選做題:解方程組
(三)思考題:課本第32頁“想一想”.
【教法說明】作業 (一)是為了鞏固本節所學知識;作業 (二)有很強的技巧性,可培養學生興趣;作業 (三)培養學生分析問題、解決問題的能力.
Copyright 2010-2019 Qinzibuy.com 【親親園丁】 版權所有 備案編號:粵ICP備14102101號