日期:2022-02-14
這是直線與圓教案,是優(yōu)秀的數(shù)學(xué)教案文章,供老師家長們參考學(xué)習(xí)。

一、教學(xué)目標(biāo)
【知識與技能】
了解直線和圓的三種位置關(guān)系相交、相切、相離和割線、切線、切點、交點等有關(guān)概念。能夠準(zhǔn)確利用直線和圓的位置關(guān)系的判斷方法判斷直線和圓的位置關(guān)系。
【過程與方法】
通過實物和課件演示,讓學(xué)生體驗數(shù)形結(jié)合的數(shù)學(xué)思想。從而提高學(xué)生的畫圖、識圖能力。由點和圓的位置關(guān)系歸納、類比出直線和圓的位置關(guān)系,從而提高學(xué)生的知識遷移能力。
【情感態(tài)度價值觀】
激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣與好奇心。
二、教學(xué)重難點
【教學(xué)重點】
直線和圓的三種位置關(guān)系和兩種判別方法。
【教學(xué)難點】
直線和圓的三種位置關(guān)系和兩種判別方法。
三、教學(xué)過程
(一)引入新課
利用多媒體展示日出的圖片,引導(dǎo)學(xué)生思考:把海平面看作一條直線,太陽看作一個圓,由此你能得出直線與圓的位置關(guān)系嗎?由此你能歸納出直線和圓有幾種位置關(guān)系嗎?
(二)探索新知
組織學(xué)生在作業(yè)紙上畫出數(shù)學(xué)模型
預(yù)設(shè):
一、教學(xué)目標(biāo)
【知識與技能目標(biāo)】
能夠準(zhǔn)確用圖形表示出直線與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關(guān)系。
【過程與方法目標(biāo)】
經(jīng)歷操作、觀察、探索、總結(jié)直線與圓位置關(guān)系的判斷方法,提高觀察、比較、概括的邏輯思維能力。
【情感態(tài)度價值觀目標(biāo)】
激發(fā)求知欲和學(xué)習(xí)興趣,鍛煉積極探索、發(fā)現(xiàn)新知識、總結(jié)規(guī)律的能力,解題時養(yǎng)成歸納總結(jié)的良好習(xí)慣。
二、教學(xué)重、難點
【重點】
用解析法研究直線與圓的位置關(guān)系。
【難點】
體會用解析法解決問題的數(shù)學(xué)思想。
三、教學(xué)用具
多媒體課件
四、教學(xué)過程
(一)復(fù)習(xí)舊知,導(dǎo)入新課
教師提問:在初中學(xué)習(xí)過的直線與圓的位置關(guān)系有幾種?有哪幾種?有什么樣的判定方法?直線與圓的位置關(guān)系有三種,分別是相交、相切、相離。
判斷方法
(1)定義法:看直線與圓公共點個數(shù)
(2)比較法:圓心到直線的距離d與圓的半徑r做比較
(五)課堂小結(jié),布置作業(yè)
小結(jié):(1)這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?
(2)在數(shù)學(xué)問題的解決過程中運用了哪些數(shù)學(xué)思想?
作業(yè):學(xué)生對比兩種判斷直線與圓位置關(guān)系的解法,哪種更簡捷,對用方程組解的個數(shù)的判斷方法,在課外做進(jìn)一步的探究,下一節(jié)課匯報。
五、板書設(shè)計
教學(xué)目標(biāo) :
1.使學(xué)生理解直線和圓的相交、相切、相離的概念。
2.掌握直線與圓的位置關(guān)系的性質(zhì)與判定并能夠靈活運用來解決實際問題。
3.培養(yǎng)學(xué)生把實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力及分類和化歸的能力。
重點難點:
1.重點:直線與圓的三種位置關(guān)系的概念。
2.難點:運用直線與圓的位置關(guān)系的性質(zhì)及判定解決相關(guān)的問題。
教學(xué)過程 :
一.復(fù)習(xí)引入
1.提問:復(fù)習(xí)點和圓的三種位置關(guān)系。
(目的:讓學(xué)生將點和圓的位置關(guān)系與直線和圓的位置關(guān)系進(jìn)行類比,以便更好的掌握直線和圓的位置關(guān)系)
2.由日出升起過程中的三個特殊位置引入直線與圓的位置關(guān)系問題。
(目的:讓學(xué)生感知直線和圓的位置關(guān)系,并培養(yǎng)學(xué)生把實際問題抽象成數(shù)學(xué)模型的能力)
二.定義、性質(zhì)和判定
1.結(jié)合關(guān)于日出的三幅圖形,通過學(xué)生討論,給出直線與圓的三種位置關(guān)系的定義。
(1)線和圓有兩個公共點時,叫做直線和圓相交。這時直線叫做圓的割線。
(2)直線和圓有唯一的公點時,叫做直線和圓相切。這時直線叫做圓的切線。唯一的'公共點叫做切點。
(3)直線和圓沒有公共點時,叫做直線和圓相離。
2.直線和圓三種位置關(guān)系的性質(zhì)和判定:
如果⊙O半徑為r,圓心O到直線l的距離為d,那么:
(1)線l與⊙O相交 d<r
(2)直線l與⊙O相切d=r
(3)直線l與⊙O相離d>r
三.例題分析:
例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C為圓心,r為半徑。
①當(dāng)r= 時,圓與AB相切。
②當(dāng)r=2cm時,圓與AB有怎樣的位置關(guān)系,為什么?
③當(dāng)r=3cm時,圓與AB又是怎樣的位置關(guān)系,為什么?
④思考:當(dāng)r滿足什么條件時圓與斜邊AB有一個交點?
四.小結(jié)(學(xué)生完成)
五、隨堂練習(xí):
(1)直線和圓有種位置關(guān)系,是用直線和圓的個數(shù)來定義的;這也是判斷直線和圓的位置關(guān)系的重要方法。
(2)已知⊙O的直徑為13cm,直線L與圓心O的距離為d。
①當(dāng)d=5cm時,直線L與圓的位置關(guān)系是;
②當(dāng)d=13cm時,直線L與圓的位置關(guān)系是;
③當(dāng)d=6.5cm時,直線L與圓的位置關(guān)系是;
(目的:直線和圓的位置關(guān)系的判定的應(yīng)用)
(3)⊙O的半徑r=3cm,點O到直線L的距離為d,若直線L 與⊙O至少有一個公共點,則d應(yīng)滿足的條件是()
(A)d=3 (B)d≤3 (C)d<3 (D)d>3
(目的:直線和圓的位置關(guān)系的性質(zhì)的應(yīng)用)
(4)⊙O半徑=3cm.點P在直線L上,若OP=5 cm,則直線L與⊙O的位置關(guān)系是()
(A)相離(B)相切(C)相交(D)相切或相交
(目的:點和圓,直線和圓的位置關(guān)系的結(jié)合,提高學(xué)生的綜合、開放性思維)
想一想:
在平面直角坐標(biāo)系中有一點A(-3,-4),以點A為圓心,r長為半徑時,
思考:隨著r的變化,⊙A與坐標(biāo)軸交點的變化情況。(有五種情況)
六、作業(yè) :P100—2、3
數(shù)學(xué)教案-直線和圓的位置關(guān)系
直線與圓的位置關(guān)系
教學(xué)目標(biāo) :
1.使學(xué)生理解直線和圓的相交、相切、相離的概念。
2.掌握直線與圓的位置關(guān)系的性質(zhì)與判定并能夠靈活運用來解決實際問題。
3.培養(yǎng)學(xué)生把實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力及分類和化歸的能力。
重點難點:
1.重點:直線與圓的三種位置關(guān)系的概念。
2.難點:運用直線與圓的位置關(guān)系的性質(zhì)及判定解決相關(guān)的問題。
教學(xué)過程 :
一.復(fù)習(xí)引入
1.提問:復(fù)習(xí)點和圓的三種位置關(guān)系。
(目的:讓學(xué)生將點和圓的位置關(guān)系與直線和圓的位置關(guān)系進(jìn)行類比,以便更好的掌握直線和圓的位置關(guān)系)
2.由日出升起過程中的三個特殊位置引入直線與圓的位置關(guān)系問題。
(目的:讓學(xué)生感知直線和圓的位置關(guān)系,并培養(yǎng)學(xué)生把實際問題抽象成數(shù)學(xué)模型的能力)
二.定義、性質(zhì)和判定
1.結(jié)合關(guān)于日出的三幅圖形,通過學(xué)生討論,給出直線與圓的三種位置關(guān)系的定義。
(1)線和圓有兩個公共點時,叫做直線和圓相交。這時直線叫做圓的割線。
(2)直線和圓有唯一的公點時,叫做直線和圓相切。這時直線叫做圓的切線。唯一的'公共點叫做切點。
(3)直線和圓沒有公共點時,叫做直線和圓相離。
2.直線和圓三種位置關(guān)系的性質(zhì)和判定:
如果⊙O半徑為r,圓心O到直線l的距離為d,那么:
(1)線l與⊙O相交 d
(2)直線l與⊙O相切d=r
(3)直線l與⊙O相離d>r
三.例題分析:
例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C為圓心,r為半徑。
①當(dāng)r= 時,圓與AB相切。
②當(dāng)r=2cm時,圓與AB有怎樣的位置關(guān)系,為什么?
③當(dāng)r=3cm時,圓與AB又是怎樣的位置關(guān)系,為什么?
④思考:當(dāng)r滿足什么條件時圓與斜邊AB有一個交點?
四.小結(jié)(學(xué)生完成)
五、隨堂練習(xí):
(1)直線和圓有種位置關(guān)系,是用直線和圓的個數(shù)來定義的;這也是判斷直線和圓的位置關(guān)系的重要方法。
(2)已知⊙O的直徑為13cm,直線L與圓心O的距離為d。
①當(dāng)d=5cm時,直線L與圓的位置關(guān)系是;
②當(dāng)d=13cm時,直線L與圓的位置關(guān)系是;
③當(dāng)d=6.5cm時,直線L與圓的位置關(guān)系是;
(目的:直線和圓的位置關(guān)系的判定的應(yīng)用)
(3)⊙O的半徑r=3cm,點O到直線L的距離為d,若直線L 與⊙O至少有一個公共點,則d應(yīng)滿足的條件是()
(A)d=3 (B)d≤3 (C)d<3 (D)d>3
(目的:直線和圓的位置關(guān)系的性質(zhì)的應(yīng)用)
(4)⊙O半徑=3cm.點P在直線L上,若OP=5 cm,則直線L與⊙O的位置關(guān)系是()
(A)相離(B)相切(C)相交(D)相切或相交
(目的:點和圓,直線和圓的位置關(guān)系的結(jié)合,提高學(xué)生的綜合、開放性思維)
想一想:
在平面直角坐標(biāo)系中有一點A(-3,-4),以點A為圓心,r長為半徑時,
思考:隨著r的變化,⊙A與坐標(biāo)軸交點的變化情況。(有五種情況)
六、作業(yè) :P100—2、3
幼兒園學(xué)習(xí)網(wǎng) | 聯(lián)系方式 | 發(fā)展歷程
Copyright 2010-2019 Qinzibuy.com 【親親園丁】 版權(quán)所有 備案編號:粵ICP備14102101號